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Abstract. We present a detailed derivation of the Gutzwiller approximation for multi-band Hubbard mod-
els with density-density Coulomb interactions. For the one-band Hubbard model we introduce a mathe-
matically well-defined formalism which is easily generalized to the multi-band case. In contrast to earlier
attempts, our approach allows us to include inter-orbital hopping terms in the Hamiltonian.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.27.+a Strongly correlated electron
systems; heavy fermions

1 Introduction

During the last decades the theoretical investigation of
correlated metals focussed on the one-band Hubbard
model [1]. These intensive studies considerably deepened
our understanding of the model; for a recent review,
see reference [2]. However, it remains debatable whether
the one-band Hubbard model actually captures the essen-
tial physics of real materials like the transition metals and
their compounds. For example, it is commonly accepted
that ferromagnetism in the one-band Hubbard model re-
quires (unrealistically) large interaction strengths, or a
density of states, which significantly differs from those ex-
pected in three dimensional systems with realistic hop-
ping matrix elements. On the other hand, the variational
investigations of a two-band model [3–5] indicate that
intra-atomic Hund’s-rule exchange terms place the ferro-
magnetic transition into a region of more moderate in-
teraction strengths. Thus, the atomic structure of tran-
sition metals must be taken seriously to develop a qual-
itative understanding of the mechanisms for correlation
effects in these materials. Consequently, it is necessary to
study multi-band Hubbard models. In this work we an-
alyze Jastrow-type many-particle trial states as approxi-
mate ground states for multi-band models.

In his seminal work Gutzwiller proposed a variational
method for the investigation of the one-band Hubbard
model [6]. His many-particle wave function |Ψ〉 is defined
as a many-particle operator (“correlator”) acting on a
one-particle product state |Ψ0〉. The correlator reduces
the number of energetically unfavorable doubly occupied
sites with respect to the reference state |Ψ0〉. Gutzwiller
also proposed an approximate evaluation of his trial state
(“Gutzwiller approximation”) which was later seen to be-
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come exact in the limit of infinite spatial dimensions [7,8].
From the results of his approximation he also concluded
that ferromagnetism requires large Coulomb interactions.

After Gutzwiller’s basic work there were several at-
tempts to generalize the Gutzwiller method to more com-
plicated situations. However, even the inclusion of an an-
tiferromagnetic one-particle state |Ψ0〉 in the one-band
case led to some inconsistent and partly unphysical re-
sults [9,10]. Chao and Gutzwiller [11,12] generalized the
Gutzwiller approximation to a degenerate two-band model
but an analytical expression for the variational ground-
state energy of their generalized trial state could not be
derived.

The physical content of the Gutzwiller approximation
became more transparent in the work by Ogawa et al. [9]
and by Vollhardt [13], where it was derived from (semi-
classical) counting arguments. This approach led to a
successful application of the Gutzwiller approximation to
more complicated Hamiltonians, e.g., the periodic Ander-
son model [14–18]. Despite this success the counting ap-
proach remains unsatisfactory for two reasons. First, it is
not clear to which variational wave function the final re-
sults actually apply. Second, it lacks a simple recipe that
can straightforwardly be applied to all cases of interest.

For example, serious problems arise for multi-band
wave functions, where the total number of electrons per
orbital is not conserved. When inter-orbital hopping terms
are not artificially neglected, a consistent formulation
of the standard counting approximation was up to now
not possible for these wave functions. In a recent work
Okabe [19] found the correct results for multi-band sys-
tems with non-hybridized orbitals. However, in his for-
mulation he could only speculate about the expectation
values for inter-orbital hopping terms. Indeed, his expres-
sions differ from our results.
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For non-degenerate orbitals additional complications
arise, because in this case the generalized Gutzwiller cor-
relator modifies the occupancies of the orbitals. As a con-
sequence it is necessary to introduce a new one-particle
state |Φ0〉 to derive a compact expression for the varia-
tional ground-state energy. The subtle difference between
|Φ0〉 and |Ψ0〉 in the periodic Anderson model was dis-
cussed in detail by Vulović and Abrahams [14]. Although
they found the correct energy expression for the periodic
Anderson model, their formulation could neither be gen-
eralized to multi-band systems. In this work we present
a mathematical definition of the Gutzwiller approxima-
tion scheme for definite variational wave functions. The
results and first applications of our generalized Gutzwiller
method were given in references [3,20]. In this article we
present a detailed derivation of our formalism.

An alternative route to derive the energy expression
of the Gutzwiller method is the slave-boson mean-field
approximation for degenerate Hubbard models [22,23]. In
reference [21] our results are compared with this approach
and with earlier attempts to generalize the Gutzwiller
method.

Recently it became possible to evaluate analytically a
more general class of Gutzwiller correlated wave functions
in the limit of infinite spatial dimensions, both for a Hamil-
tonian with pure density-density interaction [21] (see be-
low) and for the full atomic Hamiltonian [5]. This evalu-
ation requires many-particle techniques and, therefore, is
much more complex than the combinatorial derivation of
the Gutzwiller approximation. Hence, our method should
be seen as a simple alternative to the sophisticated di-
agrammatical formalism in reference [21]. Moreover, our
approach finally clarifies the long-standing problem of a
generalization of the Gutzwiller approximation to multi-
band systems.

Our paper is organized as follows. In Section 2 we in-
troduce a multi-band Hubbard model and our correspond-
ing Gutzwiller-correlated wave functions. In Section 3 we
re-derive the Gutzwiller approximation for the one-band
Hubbard model. Then, in Section 4, we extend the one-
band formalism to our multi-band Hamiltonian. A sum-
mary in Section 5 closes our presentation.

2 Model Hamiltonian and generalized
Gutzwiller wave functions

2.1 Hamiltonian and notations

We study the multi-band Hubbard-type Hamiltonian

Ĥ =
∑

i,j,σ,σ′

tσ,σ
′

i,j ĉ+i;σ ĉj;σ′ +
∑
σ,σ′

Uσ,σ
′∑

i

n̂i;σn̂i;σ′ . (1)

In standard notation ĉ+i;σ (ĉi;σ) creates (annihilates) an
electron in the spin-orbit state σ at lattice site i, and
n̂i;σ = ĉ+i;σ ĉi;σ is the respective density operator. In the fol-
lowing the 2N spin-orbit states σ will be briefly denoted
as ‘orbitals’; N is the number of orbitals per site. Note

that σ, σ′ may also include orbitals of different atoms if
it is necessary to study a basis with more than one atom

per site. Furthermore, tσ,σ
′

i,j = (tσ
′,σ
j,i )∗ is the matrix ele-

ment for an electron transfer from orbital σ′ on site j to
orbital σ at site i.

The Hamiltonian (1) contains only density-density in-
teractions. Hence, all local terms of the form

ĉ+i;σ1
ĉ+i;σ2

ĉi;σ3
ĉi;σ4

with {σ1, σ2} 6= {σ3, σ4} , (2)

which cannot be written as products of density operators,
are neglected. Nevertheless, Hund’s rule exchange terms
are partly included in the Hamiltonian (1). To see this
we divide the spin-orbit index σ in an orbital (b) and a
spin (s) part, and write our coefficients as

U (b,s),(b′,s′) = U b,b
′

C − δs,s′J
b,b′ . (3)

U b,b
′

C and Jb,b
′

are the standard Coulomb and exchange
integrals between the two orbitals b, b′ (Jb,b ≡ 0). Thus,
the Hamiltonian (1) favors atomic configurations with a
maximum total spin into the z direction. However, Hund’s
first rule is not fulfilled, since these configurations are not
degenerate with the other states of the same spin mul-
tiplet. To obtain the correct spin multiplicity and ligand
field symmetry we have to include all relevant exchange
terms (2); for more details and an example, see refer-
ence [5]. Within the Gutzwiller approximation scheme it
seems to be necessary to restrict ourself to the incomplete
Hamiltonian (1). In the single-band case (N = 1) we re-
cover the well-known Hubbard model,

Ĥ =
∑
i,j

2∑
σ=1

ti,j ĉ
+
i;σ ĉj;σ + U

∑
i

n̂i;1n̂i;2, (4)

where the two numbers σ = 1, 2 represent the two spin
directions and U ≡ 2U1,2.

To properly define the wave functions for the varia-
tional investigation of our Hamiltonian (1) it is convenient
to introduce the following notations.

(i) At each lattice site 22N different site occupancies are
possible. For example, in a two-band model (N = 2)
the 16 occupancies are: one empty, four single, six
double, four triple, and one quadruple occupancy. In
general, we will denote these occupancies by multiple-
orbital indices

I ∈ {∅; (1), . . . , (2N); (1, 2), (1, 3) . . . , (2, 3), (2, 4), . . . ;

(1, 2, 3), . . . ; . . . ; (1, . . . , 2N)} , (5)

i.e., the index I contains all occupied orbitals, which
are arbitrarily numbered as σ = 1, . . . , 2N . The sym-
bol ∅ means an empty site. We will interpret the in-
dices as sets in the usual sense. Thus, the standard
mathematical set operations apply. For example, in
the configuration I\I ′ only those orbitals in I are oc-
cupied which are not in I ′. The complement of I is
I = (1, 2, . . . , 2N)\I, i.e., in the configuration I all
orbitals but those in I are occupied.
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The absolute value |I| of a configuration is the number
of elements in it, i.e.,

|(∅)| = 0; |(σ)| = 1; |(σ, σ′)| = 2; . . . ;

|(1, . . . , 2N)| = 2N. (6)

(ii) The operator which projects onto a specific configura-
tion I on site i is given by

m̂i;I =
∏
σ∈I

n̂i;σ
∏
σ′∈I

(1− n̂i;σ′) . (7)

Thus, the operator

M̂I =
∑
i

m̂i;I (8)

counts the number of sites with an occupancy I. These
“net” occupancy operators differ from the respective
“gross” occupancy operators

n̂i;I =
∏
σ∈I

n̂i;σ, (9a)

N̂I =
∑
i

n̂i;I . (9b)

N̂I measures the number of sites where all orbitals σ ∈
I are occupied, and all sites with an occupancy I ′ ⊇ I
are also included. Each gross (net) operator can be
written as a sum of net (gross) operators:

N̂I =
∑
I′(⊇I)

M̂I′ , (10a)

M̂I =
∑
I′(⊇I)

(−1)
|I′\I|

N̂I′ . (10b)

With the help of the above definitions we may rewrite our
Hamiltonian (1) as

Ĥ =
∑

i,j,σ,σ′

tσ,σ
′

i,j ĉ+i;σ ĉj;σ′ +
∑
I

UI M̂I , (11a)

with the configuration energies

UI =
∑
σ,σ′∈I

Uσ,σ
′

. (11b)

2.2 Variational wave functions

To examine the one-band Hubbard model,

Ĥ =
∑
i,j

2∑
σ=1

ti,j ĉ
+
i;σ ĉj;σ + U M̂12, (12)

Gutzwiller [6] proposed the following variational wave
function,

|Ψ〉 = gM̂12 |Ψ0〉. (13)

Here, |Ψ0〉 is any normalized one-particle product state
and g is a real variational parameter which controls the
number of doubly occupied sites. A straightforward gen-
eralization of this wave function for a multi-orbital system
is given by [20]

|Ψ〉 =
∏

I (|I|≥2)

gM̂I

I |Ψ0〉. (14)

Besides the 22N − (2N + 1) real numbers gI , the one-
particle wave function |Ψ0〉 may also depend on fur-
ther variational parameters. For example, they may be
used to control the gross occupancies 〈ni,σ〉Ψ when non-
degenerate orbitals are involved, or magnetic order must
be taken into account. Due to the relations (10) we could
also use the gross operators (9b) in the ansatz (14) with-
out changing our variational space. However, as we will
see below, the net operators are more useful for the for-
mulation of our approximation.

In the course of our derivation it will also become clear
that an analytical expression for the energy of our wave
function (14) becomes feasible because every multiple oc-
cupancy (|I| ≥ 2) is controlled by its own variational pa-
rameter. The earlier attempts of Chao and Gutzwiller [11,
12] to extend the Gutzwiller approximation were bound to
fail just at this point. Their variational wave function,

|Ψ ′〉 =
∏

I (|I|=2)

gN̂II |Ψ0〉, (15)

contains only N(2N − 1) independent variational param-
eters, and, thus, is too restricted to allow for a success-
ful generalization of the Gutzwiller approximation to the
multi-band case.

3 Gutzwiller approximation for the one-band
Hubbard model

In this section we re-derive the Gutzwiller approximation
for the one-band Hubbard model. Our formulation will
enable us to treat the multi-band case as a straightforward
generalization of the one-band formalism.

As required in any variational examination of a quan-
tum mechanical system, we have to determine the expec-
tation value for the Hamiltonian (12) in our trial state
(13)

〈Ĥ〉Ψ ≡
〈Ψ |Ĥ|Ψ〉

〈Ψ | Ψ〉
=
∑
i,j

ti,j

2∑
σ=1

〈ĉ+i;σ ĉj;σ〉Ψ

+U
∑
i

〈m̂i,12〉Ψ . (16)

Without further approximations the analytical evaluation
of this energy expression was possible so far only in the
special cases of one [7] and infinite spatial dimensions [8].
Gutzwiller himself proposed an approximate evaluation of
equation (16), the so-called “Gutzwiller approximation”,
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which was later motivated in a more transparent manner
by Ogawa et al. [9] and Vollhardt [13]. Our formulation is
similar to that of Vulović and Abrahams [14].

To formulate a well-defined mathematical description
of the Gutzwiller approximation it is convenient to intro-
duce a local basis for our many-particle Hilbert space,

|ΦN1,N2〉 ≡
∏
i1∈N1

∏
i2∈N2

ĉ+i1;1ĉ
+
i2;2|vacuum〉. (17)

N1 and N2 are sets of lattice sites with N1 = |N1| and
N2 = |N2| elements. As the basis (17) is complete, we
may expand the one-particle wave function in the form

|Ψ0〉 =
∑
N1,N2

T (N1,N2)|ΦN1,N2〉, (18)

with expansion coefficients T (N1,N2). The sum over
N1,N2 has to include all subsets of the whole set of lattice
sites L (|L| = L) with N1, N2 elements, respectively. In
this way we also fix the number of particles in |Ψ0〉. This is
a reasonable restriction since the Hamiltonian (12) com-

mutes with the gross operators N̂1 and N̂2. Then, our
correlated trial state (13) becomes

|Ψ〉 =
∑
N1,N2

gM12(N1,N2)T (N1,N2)|ΦN1,N2〉, (19)

where the function M12(N1,N2) counts the number of
doubly occupied sites, provided that the up (down) elec-
trons are placed at the sites belonging to N1 (N2). We use
the fact that the states (17) are orthogonal and normal-
ized, and write the expectation values in (16) as

〈Ψ | Ψ〉 =
∑
N1,N2

g2M12(N1,N2) |T (N1,N2)|2, (20a)

〈Ψ |ĉ+i;1ĉj;1|Ψ〉 =
∑
N ′1,N2

gM12(N ′1∪i,N2)gM12(N ′1∪j,N2)

×T ∗(N ′1 ∪ i,N2)T (N ′1 ∪ j,N2), (20b)

〈Ψ |m̂i,12|Ψ〉 =
∑
N ′1,N

′
2

g2M12(N ′1∪i,N
′
2∪i)

× |T (N ′1 ∪ i,N
′
2 ∪ i)|

2
. (20c)

Here, the following restrictions for the sum over N ′1 and
N ′2 hold,

i, j /∈ N ′1 and |N ′1| = N1 − 1 in (20b), (21a)

i /∈ N ′1,N
′
2 and |N ′1| = N1 − 1,

|N ′2| = N2 − 1 in (20c). (21b)

To make further progress we need expressions for the two
types of products between the coefficients T in (20). They
can be obtained approximately if we consider the cor-
responding expectation values in the uncorrelated wave
function |Ψ0〉. As a first step we address the norm

〈Ψ0 | Ψ0〉 =
∑
N1,N2

|T (N1,N2)|2 = 1. (22)

The Gutzwiller approximation will now be defined as fol-
lows. We assume that each term in (22) is independent of
the special choice of the sets N1,N2. This means that all
local distributions of electrons have the same probability
in the uncorrelated state |Ψ0〉. Consequently, equation (22)
gives

|T (N1,N2)|2 =

(
L
N1

)−1(
L
N2

)−1

≡ P (L,N1)P (L,N2). (23)

As a second step we make an equivalent assumption about
an expectation value which involves an electron transfer,

〈Ψ0|ĉ
+
i;1ĉj;1|Ψ0〉 ≡ 〈ĉ

+
i;1ĉj;1〉0

=
∑
N ′1,N2

T ∗(N ′1 ∪ i,N2)T (N ′1 ∪ j,N2). (24)

Again, we require that the individual terms in (24) do not
depend on the sets N ′1, N2. Then, equation (24) leads to

T ∗(N ′1 ∪ i,N2)T (N ′1 ∪ j,N2) =

P (L− 2, N1 − 1)P (L,N2)〈ĉ+i;1 ĉj;1〉0. (25)

Equations (23, 25) constitute the Gutzwiller approxima-
tion for the single-band case.

Now we are in the position to evaluate equations (20).
First, the norm in the interacting case becomes

〈Ψ | Ψ〉 = P (L,N1)P (L,N2)
∑
N1,N2

g2M12(N1,N2). (26)

The sum over the sets N1,N2 can be replaced by a sum
over the number of doubly occupied sites M12 if we intro-
duce the combinatorial factor

CM12(L,N1, N2)

=
L!

M12!(N1 −M12)!(N2 −M12)!(L−N1 −N2 +M12)!
(27a)

=
L!

M12!M1!M2!M∅!
· (27b)

This factor counts the number of possibilities to distribute
N1, N2 electrons with spin up and down on the lattice such
that M12 sites are doubly occupied. It allows us to write
equation (26) as

〈Ψ | Ψ〉 = P (L,N1)P (L,N2)

×
∑
M12

g2M12CM12(L,N1, N2) . (28)
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With the help of equation (23) the expectation value for
a double occupancy (20c) becomes

〈Ψ |m̂i,12|Ψ〉 = P (L,N1)P (L,N2)

×
∑
N ′1,N

′
2

g2M12(N ′1∪i,N
′
2∪i) (29a)

= P (L,N1)P (L,N2)

×
∑
M12

g2M12+2CM12(L− 1, N1 − 1, N2 − 1).

(29b)

To relate this expression to (28) for the norm we recast
equation (29b) into the form

〈Ψ |m̂i,12|Ψ〉 = P (L,N1)P (L,N2)

×
∑
M12

g2 (N1 −M12)(N2 −M12)

L(L−N1 −N2 +M12)

×
[
g2M12CM12(L,N1, N2)

]
. (30)

Here, we used the fact that we may set

L−N1 −N2 +M12 + 1 ' L−N1 −N2 +M12 (31)

in the quotient (30) when we perform the thermodynamic
limit (L → ∞, N1 → ∞, N2 → ∞, M12 → ∞; N1,2/L
and M12/L finite). Note that the factors P (L,N1)−1,
P (L,N2)−1, and CM12(L,N1, N2) are macroscopic quanti-
ties of the order of O(exp(L)). Below we will use this fact
to replace the sum in (30) by its maximum term when we
divide 〈Ψ |m̂i;12|Ψ〉 by the norm (28).

A similar form as equation (30) can be found for the ex-
pectation value for a hopping term. With the help of (25)
we find

〈Ψ |ĉ+i;1ĉj;1|Ψ〉 = 〈ĉ+i;1ĉj;1〉0P (L− 2, N1 − 1)P (L,N2)

×
∑
N ′1,N2

gM12(N ′1∪i,N2)gM12(N ′1∪j,N2).

(32)

Again, the sum over the sets N ′1,N2 can be replaced by
a sum over M12. To this end we have to distinguish four
different cases in (32) since the sites i and j can either
be occupied with the opposite spin or empty when the
hopping process takes place. Hence, we have to address
(i) i, j /∈ N2; (ii) i ∈ N2, j /∈ N2; (iii) j ∈ N2, i /∈ N2;
(iv) i, j ∈ N2. Altogether, (32) can be written as

〈Ψ |ĉ+i;1ĉj;1|Ψ〉 = 〈ĉ+i;1ĉj;1〉0P (L− 2, N1 − 1)P (L,N2)

×
∑
M12

g2M12

[
CM12(L− 2, N1 − 1, N2)

+2gCM12(L− 2, N1 − 1, N2 − 1)

+g2CM12(L− 2, N1 − 1, N2 − 2)
]
. (33)

We extract the factors equivalent to the norm, and arrive
at

〈Ψ |ĉ+i;1ĉj;1|Ψ〉 = 〈ĉ+i;1ĉj;1〉0P (L,N1)P (L,N2)
L2

N1(L−N1)

×
∑
M12

[(N1 −M12)(L−N1 −N2 +M12)

L2

+ 2g
(N1 −M12)(N2 −M12)

L2
(34)

+ g2 (N1 −M12)(N2 −M12)2

L2(L−N1 −N2 +M12)

]
g2M12CM12(L,N1, N2),

where we again neglected numbers of the order unity in
the quotients, similar to equation (31).

Now we are in the position to take advantage of the
simplifications in the thermodynamic limit when we divide
by the norm. The sum in equation (28) will have a macro-
scopic maximum for a certain value M12 (and respective
values M1, M2, M∅). The same holds for the expectation
values (30, 34) since the factors of order one do not affect
the macroscopic peak position. Hence, we may replace the
sum by its maximum term in all these cases. After the ap-
plication of Stirling’s formula, X! ≈ XX , we see that this
maximization problem has the general form

∂

∂x

(
px
∏
i

fi(x)αifi(x)

)
= 0, (35a)

where the linear functions fi(x) obey the additional con-
dition ∑

i

αi
∂

∂x
fi(x) = 0. (35b)

After a short calculation we find

p
∏
i

fi(x)αi
∂
∂x fi(x) = 1. (36)

For example, for the norm we obtain from (27a, 28) that
f1(x) = M12 = x, f2(x) = N1 − x, f3(x) = N2 − x,
f4(x) = L−N1−N2 +x, αi = −1, and p = g2. Hence, we
immediately find from (36) the well-known “maximum-
term condition” of the Gutzwiller approximation,

g2 =
m∅m12

m1m2

(
mI ≡M I/L

)
. (37)

Equation (37) allows us to replace the original variational
parameter g by the new and more transparent parame-
ter m12.

When we replace the expressions (30, 34) by their max-
imum terms and divide them by the norm we obtain the
expectation values in the Hamiltonian (16). Equation (30)
gives the expected result for the mean number of double
occupancies,

〈m̂i,12〉Ψ = g2m1m2

m∅
= m12, (38)
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where we used the maximum term condition (37) in the
second step. Analogously, we derive from (34)

〈ĉ+i;σ ĉj;σ〉Ψ = qσ〈ĉ
+
i;σ ĉj;σ〉0. (39)

Here, we introduced Gutzwiller’s “loss-factors”

q1 = m1m∅ + 2gm1m2 + g2m1m
2
2

m∅

= (
√
m1m∅ +

√
m2m12 )

2
,

q2 = (
√
m2m∅ +

√
m1m12 )

2
. (40)

Thus, we finally obtain

〈Ĥ〉Ψ =
∑
i(6=)j

ti,j

2∑
σ=1

qσ〈ĉ
+
i;σ ĉj;σ〉0

+Lε
2∑

σ=1

nσ + LUm12 (41)

for the variational ground-state energy of the one-band
Hubbard model within the Gutzwiller approximation.
Here, we included the site-independent on-site energies
ε ≡ ti,i. Equation (41) has to be minimized with re-
spect to the variational parameter m12 and (perhaps)
additional parameters which determine the one-particle
product state |Ψ0〉.

4 Gutzwiller approximation for multi-band
Hubbard models

In principle, the derivation of the Gutzwiller approxima-
tion for multi-band Hubbard models is a straightforward
generalization of our one-band formalism presented in the
last section. There is only one obstacle which complicates
the calculation. As first discussed by Vulović and Abra-
hams [14] in the context of the periodic Anderson model,
the expectation values for the gross one-particle occupan-
cies are different for the uncorrelated state |Ψ0〉 and the
many-particle wave function |Ψ〉. This can most easily be
seen for a system with non-degenerate orbitals. In this case
it is obvious that the correlator in (14) tends to reduce the
number of electrons in the same orbitals. Consequently,
the occupancies 〈N̂σ〉Ψ are modified by the Coulomb in-
teraction and, in general, they will not coincide with the
respective expectation values in |Ψ0〉.

To overcome the resulting technical problems in the
derivation of the Gutzwiller approximation we replace |Ψ0〉
by another (normalized) one-particle product wave func-
tion |Φ0〉,

|Ψ0〉 =
∏
σ

ηN̂σσ |Φ0〉. (42)

The parameters ησ are real numbers, and will be chosen
such that the gross one-particle occupancies are the same
in |Φ0〉 and |Ψ〉; see below. Since |Ψ0〉 and |Φ0〉 both cover

the whole space of one-particle product wave functions,
we do not modify the space of correlated variational wave
functions by this procedure. In principle, we could also
work with the original form of |Ψ〉, equation (14), to de-
rive the same final energy functional. However, the trans-
formation (42) considerably simplifies our calculations and
the explicit form of the energy functional.

As already known from the one-band case it is conve-
nient to evaluate |Φ0〉 in a local basis

|Φ0〉 =
∑
Ñ

T (Ñ )|ΦÑ 〉, (43a)

|ΦÑ 〉 ≡
∏
σ

∏
i∈Nσ

ĉ+i,σ|vacuum〉. (43b)

Here and in the following we use the abbreviations

Ñ ≡ {N1, . . . ,N2N} , (44a)

Ñ ≡ {N1, . . . , N2N} (44b)

for all sub-sets Nσ of lattice sites where the orbitals
σ are occupied, and the corresponding set of numbers
Nσ = |Nσ|. The hybridization terms in (1) lead to a major
difference between equations (18, 43a). In (43a) the sum
over N1, . . . ,N2N will include all possible number distri-
butions N1, . . . , N2N of electrons on the lattice, since, in
general, the gross occupancy operators N̂σ do not com-
mute with the Hamiltonian (1).

In close analogy to the one-band case we need to de-
rive expressions for certain products of the coefficients T
in (43a). Again, we consider the one-particle state |Φ0〉 to
set up the Gutzwiller approximation for the multi-band
case. First, the norm becomes

〈Φ0|Φ0〉 =
∑
Ñ

∣∣∣T (Ñ )
∣∣∣2 =

∑
Ñ

Ω(Ñ ), (45a)

Ω(Ñ) ≡
∑
Ñ

∣∣∣T (Ñ )
∣∣∣2∏

σ

δ|Nσ|,Nσ , (45b)

whereΩ(Ñ) is the probability to find exactlyN1, . . . , N2N

electrons in the orbitals σ = 1, . . . , 2N . The Gutzwiller
approximation is defined by∣∣∣T (Ñ )

∣∣∣2 = Ω(Ñ)
∏
σ

P (L,Nσ); (46)

compare equation (23) for the one-band case.
In principle, we could fix certain occupation densities

in the wave functions |Ψ〉 and |Φ0〉. For example, the oper-
ator for the total number of spin-up (spin-down) electrons
commutes with the Hamiltonian (1), as the latter usu-
ally includes no spin-flip terms. Thus, |Ψ〉 and |Φ0〉 could
be chosen as eigenstates of these operators, i.e., we could
work with wave functions from a “canonical ensemble”.
Additional conserved quantities arise if some orbitals are
not mixed by the hybridization term in (1). Such “conser-
vation laws” could be implemented by imposing certain
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boundary conditions on the occupancies Nσ. In this case,

the number distribution Ω(Ñ) would be non-zero only in
a d-dimensional subspace (d < 2N) of the whole space of
occupancies {N1, . . . , N2N}, where 2N − d is the number
of boundary conditions.

Here, we use a more elegant way to derive our re-
sults. We work with “grand-canonical” instead of “canon-
ical” wave functions, i.e., |Ψ〉 and |Φ0〉 are allowed to
include components with any number of occupancies
{N1, . . . , N2N}. In this way even the total number of elec-
trons

∑
σ Nσ is not a good quantum number for these wave

functions. However, in the thermodynamic limit only ex-
pectation values are relevant and, thus, the canonical and
the grand-canonical derivation become equivalent. In fact,
a straightforward evaluation of the canonical wave func-
tions leads to the same final results.

In our grand-canonical point of view we may consider

the number distribution Ω(Ñ) as a continuous function
in the whole 2N -dimensional space {N1, . . . , N2N}. As

a macroscopic probability distribution, Ω(Ñ) will have a
sharp maximum for the expectation values

N0
σ ≡ 〈Φ0|N̂σ|Φ0〉. (47)

At this position

∂

∂Nσ
Ω(Ñ)

∣∣∣∣
Ñ=Ñ0

= 0, (48a)

where we set Ñ0 ≡
{
N0

1, . . . , N
0
2N

}
. Moreover,

Ω({N0
1 +∆N1, . . . , N

0
2N +∆N2N})

Ω(Ñ0)

≈ 1 (48b)

is fulfilled in the thermodynamic limit if the numbers
∆N1, . . . ,∆N2N are of the order of one. For the follow-
ing calculation we do not need the explicit form of the

function Ω(Ñ) but only the simple relations (48).
Apart from equation (46) we need expressions for the

products which stem from the evaluation of hopping con-
tributions in (1). Again, we consider the respective uncor-
related expectation values

〈Φ0|ĉ
+
i,σ ĉj,σ′ |Φ0〉 =

∑
Ñ ′

T ∗(Ñ ′i,σ)T (Ñ ′j,σ′)

=
∑
Ñ

Ωσ,σ
′

i,j (Ñ), (49a)

Ωσ,σ
′

i,j (Ñ) ≡
∑
Ñ ′

T ∗(Ñ ′i,σ)T (Ñ ′j,σ′)
∏
σ′′

δ|N ′
σ′′
|,Nσ′′

(i /∈ N ′σ , j /∈ N
′
σ′) . (49b)

Here, we introduced the notation

Ñ ′i(j),σ(σ′) ≡
{
N ′1, . . . ,N

′
σ(σ′) ∪ i(j), . . . ,N

′
2N

}
. (50)

Ωσ,σ
′

i,j (Ñ) is the probability for the hopping transfer of an

electron from the orbital σ′ on site j into the orbital σ on

site i under the restriction that the number distribution
of the other electrons is given by Ñ = {N1, . . . , N2N}. We
can surely write (49b) as

Ωσ,σ
′

i,j (Ñ) = ωσ,σ
′

i,j (Ñ)Ω(Ñ), (51a)

where ωσ,σ
′

i,j (Ñ) is a function of the order of unity. In par-

ticular, for the expectation values Ñ0 the following rela-
tion holds

ωσ,σ
′

i,j (Ñ0) = 〈Φ0|ĉ
+
i,σ ĉj,σ′ |Φ0〉. (51b)

We use the fact that the resulting probability factors for
both cases σ′ = σ and σ 6= σ′ in (49a) have the same form,

P (L− 1, Nσ)P (L− 1, Nσ′)

=
L2

(L−Nσ) (L−Nσ′)
P (L,Nσ)P (L,Nσ′), (52a)

P (L− 2, Nσ) =
L2

(L−Nσ)2P (L,Nσ). (52b)

Then, the Gutzwiller approximation reads

T ∗(Ñ ′i,σ)T (Ñ ′j,σ′)

= Ωσ,σ
′

i,j (Ñ)
L2

(L−Nσ) (L−Nσ′)

∏
σ′′

P (L,Nσ′′). (53)

Equations (46, 53) define the Gutzwiller approximation
for the multi-band case.

Now we are in the position to evaluate the correlated
expectation values. First, equation (46) allows us to write
the norm as

〈Ψ |Ψ〉 =
∑
Ñ

∣∣∣T (Ñ )
∣∣∣2∏

σ

η2Nσ
σ

∏
I(|I|≥2)

g
2ZLI (Ñ )
I (54a)

=
∑
Ñ

Ω(Ñ)
∏
σ

P (L,Nσ)η2Nσ
σ

×
∑

Ñ (|Nσ |=Nσ)

∏
I(|I|≥2)

g
2ZLI (Ñ )
I , (54b)

where ZXI (Ñ ) is the number of sites (included in X ) with a
multiple-occupancy I, provided that the distribution of all

electrons is given by Ñ ; in equations (54) we have X = L,

the set of all lattice sites. The sum over Ñ in (54b) can be
replaced by a sum over all possible multiple-occupancies

M̃ ≡ {M12, . . . ,M1,... ,2N},

〈Ψ |Ψ〉 =
∑
Ñ

Ω(Ñ)
∏
σ

P (L,Nσ)η2Nσ
σ

×
∑
M̃

C
M̃

(L, Ñ)
∏

I(|I|≥2)

g2MI

I , (55)

where we introduced the factor

C
M̃

(L, Ñ) ≡ L!
/(∏

I

MI !
)
. (56a)
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This factor counts the number of possibilities to put
N1, . . . , N2N electrons onto the lattice for a given num-
ber of sites with multiple-occupancies (12), . . . , (1 . . . 2N).
Here, the numbers of empty and single occupied sites are
determined by the completeness relations

M∅ = L−
∑
σ

Nσ +
∑

I(|I|≥2)

(|I| − 1)MI , (56b)

Mσ = Nσ −
∑

I(|I|≥2,σ∈I)

MI . (56c)

As in the one-band case, we will later see that all rele-
vant expectation values have the same form as the norm,
apart from factors of the order of unity in the respective
sums. Hence, we may replace all these expressions by their
maximum term.

As seen from (55) we have to find the maximum term

with respect to M̃ and Ñ . Let us first consider the sum

over M̃ in (55). The maximum-term condition for one of
these multiple occupancies has the simple form of equa-
tions (35) if we use Stirling’s formula and equations (56).
Thus we directly find as a generalization of equations (37)

g2
12 =

m∅m12

m1m2
,

... (mI ≡M I/L) (57)

g2
1...2N =

(m∅)
2N−1

m1...2N

m1 . . .m2N
·

The maximum-term conditions (57) also allow us to re-
place the original variational parameters gI by their phys-
ical counterparts mI .

The evaluation of the sum over the gross occupancies

Ñ in (55) would lead to considerable complications if we
worked with the original one-particle wave function |Ψ0〉.
In this case (ησ = 1) we would have to examine the ex-

plicit form of the probability distribution Ω(Ñ ) since, in
general, the maximum term in the sum in (55) will not

occur for the same set Ñ as for Ω(Ñ ), i.e., for the set Ñ0.
However, the parameters ησ may be chosen at our conve-
nience and, hence, we are allowed to demand the identity
of these peak positions, i.e.,

Nσ/L ≡ nσ
!
= n0

σ ≡ N
0
σ/L. (58)

Then, the maximum term condition in (55) with respect
to Nσ reads

0 =
∂

∂Nσ

(
Ω(Ñ)η2Nσ

σ

P (L,Nσ)

Mσ!M∅!

)∣∣∣∣
Ñ=Ñ0

(59a)

=
∂

∂Nσ

(
η2Nσ
σ

(L−Nσ)(L−Nσ)NNσ
σ

MMσ
σ M

M∅
∅

)∣∣∣∣∣
Ñ=Ñ0

, (59b)

where we used Stirling’s formula and equation (48a). This
problem has again the form of equation (35). Hence, equa-
tion (59b) fixes the parameters ησ as a function of the

gross occupancies nσ,

η2
σ =

1− nσ
nσ

mσ

m∅
· (60)

In addition, the ησ depend on the multiple-occupancies
mI via equations (56b, 56c) .

So far we did not really prove that the numbers Nσ

and MI which determine the maximum term in (55) are
indeed the expectation values for the respective operators.
However, this statement apparently holds, and it is an
simple exercise to prove that the relations

M I = LmI =
〈Ψ |M̂I |Ψ〉

〈Ψ |Ψ〉
, (61a)

Nσ = Lnσ =
〈Ψ |N̂σ|Ψ〉

〈Ψ |Ψ〉
(61b)

are fulfilled within the Gutzwiller approximation scheme.

As a last step we have to evaluate the expectation value
for an electron transfer. With the help of equation (53) we
find

〈Ψ |ĉ+i,σ ĉj,σ′ |Ψ〉 =
∑
Ñ

Hσ,σ′

i,j (Ñ)Ωσ,σ
′

i,j (Ñ) ησησ′

×
L2

(L−Nσ) (L−Nσ′)

∏
σ′′

P (L,Nσ′′)η
2Nσ′′
σ′′ , (62a)

Hσ,σ′

i,j (Ñ) =
∑
Ñ ′

(|N ′σ|=Nσ)

∏
I (|I|≥2)

exp
[
ln(gI)

(
2Z
L\{i,j}
I (Ñ ′)

+ Z
{i,j}
I (Ñ ′i,σ) + Z

{i,j}
I (Ñ ′j,σ′)

)]
. (62b)

The sum over Ñ ′ in (62b) may again be replaced by a sum

over the multiple occupancies M̃ . As in the one-band case
we must take all possible occupancies of the sites i and j
into account. Depending on these occupancies different
arguments occur in the respective combinatorial factors
of (56a). We set gI ≡ 1 for |I| ≤ 1 and use the abbreviation
δIσ ≡ |σ ∩ I|. Then, equation (62b) can be written as

Hσ,σ′

i,j (Ñ)=
∑
M̃

(∏
I

g2MI

I

) ∑
Ii(σ/∈Ii)

∑
Ij(σ′ /∈Ij)

gIi∪σgIigIj∪σ′gIj

(63)

× C
M̃

(
L− 2,

{
N1− δ

Ii
1 − δ

Ij
1 , . . . , Nσ− δ

Ij
σ , . . . ,

Nσ′− δ
Ii
σ′ , . . . , N2N− δ

Ii
2N − δ

Ij
2N

})
.

In the case σ = σ′ the terms δ
Ij
σ and δIiσ′ obey δ

Ij
σ =

δIiσ = 0 because of the summation restriction in (63). In
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the thermodynamic limit it follows that

C
M̃

(
L− 2,

{
N1 − δ

Ii
1 − δ

Ij
1 , . . . , Nσ − δ

Ij
σ , . . .

Nσ′ − δ
Ii
σ′ , . . . , N2N − δ

Ii
2N − δ

Ij
2N

})
= C

M̃
(L, Ñ)

(
Mσ

M∅

)δIjσ (Mσ′

M∅

)δIi
σ′ M2

∅

L2

×
∏

σ′′ (6=σ,σ′)

(
Mσ′′

M∅

)δIi
σ′′

+δ
Ij

σ′′

. (64)

Hence, equation (62a) becomes

〈Ψ |ĉ+i,σ ĉj,σ′ |Ψ〉 =
∑
Ñ

Ω(Ñ)
∏
σ′′

P (L,Nσ′′)η
2Nσ′′
σ′′

×
∑
M̃

∏
I

g2MI

I C
M̃

(L, Ñ)hσ,σ
′

i,j (Ñ , M̃), (65a)

hσ,σ
′

i,j (Ñ , M̃) = ωσ,σ
′

i,j (Ñ )ησησ′
L2

(L−Nσ) (L−Nσ′)

×
∑

Ii(σ/∈Ii)

∑
Ij(σ′ /∈Ij)

gIi∪σgIigIj∪σ′gIj

×

(
Mσ

M∅

)δIjσ (Mσ′

M∅

)δIi
σ′ M2

∅

L2

×
∏

σ′′ (6=σ,σ′)

(
Mσ′′

M∅

)δIi
σ′′

+δ
Ij

σ′′

. (65b)

Apart from the factor (65b), which is of the order of unity,
equation (65a) is identical to the norm (55). Thus, in the
thermodynamic limit, we may replace the whole sum by
its maximum term which has the same position as the
norm (55). When we express the factors ησ via equa-
tion (60) and use the relation

gIi∪σgIigIj∪σ′gIj =

(
M∅
Mσ

)δIjσ (M∅
Mσ′

)δIi
σ′

×
∏

σ′′ (6=σ,σ′)

(
M∅
Mσ′′

)δIi
σ′′

+δ
Ij

σ′′

√
MIi∪σMIi

M∅Mσ

√
MIj∪σ′MIj

M∅Mσ′

(66)

the expectation value for a hopping term finally becomes

〈Ψ |ĉ+i,σ ĉj,σ′ |Ψ〉

〈Ψ |Ψ〉
= qσσ′〈Φ0|ĉ

+
i,σ ĉj,σ′ |Φ0〉. (67)

Here, the renormalization factors

qσσ =
1

nσ(1− nσ)

[ ∑
I (σ/∈I)

√
mI∪σmI

]2

, (68a)

qσσ′ =
√
qσσ qσ′σ′ (68b)

are a straightforward generalization of equation (40). Note
that the derivation of equations (62–68) also holds if we
set i = j, σ 6= σ′, i.e., our Hamiltonian (1) may eventually
include a basis with more than one atom per site. Thus, in
the Gutzwiller approximation the variational ground-state
energy for the Hamiltonian (1) becomes

〈Ψ |Ĥ|Ψ〉

〈Ψ |Ψ〉
=

∑
i,j,σ,σ′

tσ,σ
′

i,j

√
qσqσ′〈ĉ

+
i;σ ĉj;σ′〉0

+L
∑
σ

εσnσ + L
∑
I

UI mI . (69)

In the first sum in (69) it is understood that either i 6= j
or σ 6= σ′. We again included the site-independent orbital
on-site energies εσ ≡ t

σ,σ
i,i in our final expression. Note that

the simple relations (58, 67) only hold for the one-particle
product state |Φ0〉 and not for the original wave function
|Ψ0〉; compare the discussions in reference [14].

Another route to derive equation (69) is the slave-
boson mean-field approximation for degenerate Hub-
bard models, which was independently proposed in refer-
ences [22,23]. Applications of the final result (69) can be
found in references [3,20], where the Mott transition and
itinerant ferromagnetism in degenerate band systems were
addressed; see also references [4,22–24]. Furthermore, an-
tiferromagnetism in a degenerate two-band system at half
band-filling was studied in reference [22].

Recently, we showed [21] that the energy expres-
sion (69) becomes exact for the Gutzwiller-correlated wave
functions (14) in the limit of infinite dimensions. In ad-
dition, this approach allows to go beyond systems with
translational invariance, i.e., all kinds of symmetry break-
ing are covered by this general approach; see [21] for de-
tails and a critical discussion of previous generalizations
of the Gutzwiller approximation to multi-band Hubbard
models.

Thus far we neglected all terms in the Hamiltonian
and, consequently, in the variational wave function which
involve the local transfer of two electrons between different
orbitals; see equation (2). When these important terms in
the local interaction are taken into account, a new class of
Gutzwiller-correlated wave functions must be introduced.
Their exact evaluation in the limit of infinite dimensions
was accomplished in [5]. This problem seems to be in-
feasible within the Gutzwiller approximation scheme as
outlined above.

5 Summary

In this work we presented a detailed derivation of the
Gutzwiller approximation for multi-band Hubbard mod-
els. In contrast to earlier approaches [11,12] we intro-
duced an individual variational parameter for each pos-
sible orbital occupancy on a lattice site. Our mathemat-
ically well-defined formulation of the Gutzwiller approxi-
mation allowed us to include inter-orbital electron trans-
fer terms. The systematic treatment of these terms posed
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serious problems for the phenomenological counting ap-
proaches [4,19].

First applications to a two-band model [3,20,22]
showed that there are significant differences between the
multi-band and the one-band case. The Brinkman–Rice
metal-to-insulator transition is found to be discontinuous,
and itinerant ferromagnetism is dominantly triggered by
the intra-atomic Hund’s-rule coupling. Therefore, we ex-
pect that the application of our method to real materials
will provide valuable new insight into the physics of multi-
band systems.

I thank W. Weber for helpful discussions, and F. Gebhard
for a critical reading of the manuscript. I am very grateful
to P. Nozières for an invitation to the Institut Max-von-Laue–
Paul-Langevin (ILL), Grenoble, where this project was com-
pleted.
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